Optimizing Deep Learning Models for Cell Recognition in Fluorescence Microscopy: the Impact of Loss Functions on Performance and Generalization

6

Luca Clissa, Antonio Macaluso, Antonio Zoccoli luca.clissa2@unibo.it

- Fluorescence Microscopy
- Challenges
- Experimental setup
- Results
- Conclusions

- Physics-based imaging technique
- Exploits light absorption/emission properties
- Used to mark/tag/stain biological compounds

- Very popular in life science
 Torpor onset [1]
- Cytoplasmatic neuronal structures
- Variability in shape, size and color hue
- Goal: count stained structures

[1] Hitrec, T., et al.: Neural control of fasting-induced torpor in mice. Scientific Reports 9(1) (oct 2019).

11/09/2023

- Manual processing
 - Time-consuming
 - Error-prone
 - Subjectivity of borderline cases
- Hard to adapt Deep Learning solutions
 - Domain shift
 - Few in-domain annotated datasets
 - How to train? How to evaluate?

- Semantic segmentation using c-ResUnet [2] and Fluorescent Neuronal Cells v2 dataset (FNC v2) [3]
- Show the impact of loss functions on model performance
 - 60 ablation studies
 - 6 loss functions
- Inspect pros and cons of several evaluation metrics
- Discuss characteristics affecting out-of-sample generalization

[2] Morelli, R., et al.: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. Scientific Reports 11(1), 22920 (2021).

[3] Clissa, L., et al.: Fluorescent neuronal cells v2: Multi-task, multi-format annotations for deep learning in microscopy. arXiv preprint (submitted to Scientific Data) (2023)

quantile	signal (%)	signal ratio	
mean s.d. min 10% 25%	0.50 0.61 0 0	367k 756k 19.57 92.39	
25% 50% 75% 90% max	0.09 0.34 0.68 1.07 4.86	145.35 291.10 1k 1.9M 1.9M	

cells agglomerate

cells agglomerate

cells agglomerate

cells agglomerate

marked cell type: shaded

cells agglomerate

cells agglomerate

cells agglom

marked cell type: dotted

marked cell type: shaded

11

cells

cells agglomerate

non-marked cell type: shaded

cells agglomerate

cells agglomerate

marked cell type: shaded

stripe

filaments

Ablation studies

- 4 alternative losses
 - Weighted Binary Cross Entropy (BCE): $w_{cell} = 50, 100, 200; w_{bkgd} = 1$
 - Dice Loss
 - Focal Loss
 - Focal Tversky Loss
- 2 combined losses
 - CombinedLoss = $\lambda_1 BCE + \lambda_2 Dice + \lambda_3 Focal$
 - CombinedFTLoss = $\lambda_1 BCE + \lambda_2$ Dice + λ_3 Focal Tversky
 - Balanced: $\lambda_1 = 0.3, \lambda_2 = 0.3, \lambda_3 = 0.4$
 - Overcrowd: $\lambda_1 = 0.2, \lambda_2 = 0.5, \lambda_3 = 0.3$
 - CellViT: $\lambda_1 = 0.5, \lambda_2 = 0.3, \lambda_3 = 0.5$

- Segmentation
 - Mean Intersection over Union (mIoU) =
 - threshold: 0.4
- Detection
 - Centers distance
 - threshold: 40 pixels (mean cell diameter)
- Counting
 - Mean Absolute Error
 - Median Absolute Error
 - Mean Percentage Error:

$$\frac{(n_t - n_p)}{\max(n_t, 1)} * 100$$

Segmentation & Detection

Loss	F1 score (IoU)	F1 score (distance)
BCE: medium	0.673±0.017	0.827±0.022
BCE: high	0.663±0.033	0.846±0.013
BCE: low	0.687±0.017	0.825±0.020
CombinedFT: overcrowd	0.740±0.029	0.848±0.026
CombinedFT: balanced	0.744±0.022	0.853±0.022
CombinedFT: CellViT	0.728±0.048	0.844±0.030
Combined: overcrowd	0.721±0.023	0.837±0.033
Combined: balanced	0.735±0.034	0.845±0.029
Combined: CellViT	0.742±0.023	0.849±0.020
Dice	0.735±0.020	0.847±0.018
Focal Tversky	0.781±0.002	0.897±0.003
Focal	0.614±0.027	0.780±0.034

Out-of-sample generalization

- Focal Tversky loss overperforms other losses
- Still some troubles separating crowded objects
 → careful post-processing needed (hole filling, small objects, watershed)
- Combined losses are competitive
 - Better tuning of lambda weights
- Generalization
 - High variability
 - Dedicated augmentation may help
 - Panoptic loss
- Integrating more metrics enables more comprehensive assessment

Thanks for your attention!

Questions?

[1] Hitrec, T., et al.: Neural control of fasting-induced torpor in mice. Scientific Reports 9(1) (oct 2019).

[2] Morelli, R., et al.: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. Scientific Reports 11(1), 22920 (2021).

[3] Clissa, L., et al.: Fluorescent neuronal cells v2: Multi-task, multi-format annotations for deep learning in microscopy. arXiv preprint (submitted to Scientific Data) (2023)

[4] Kromp, F., et al.: An annotated fluorescence image dataset for training nuclear segmentation methods. Scientific Data 7(1), 262 (2020)

[5] Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB). pp. 1–7 (2020)

Backup

Ablation studies configurations

	BCE	Dice	Focal	Focal Tversky	Combined	Combined FT
Hyperparameters	s w_cell	smooth	gamma	gamma	$\lambda_1,\lambda_2,\lambda_3$	$\lambda_1,\lambda_2,\lambda_3$
Values	[50, 100, 200]	1×10^{-6}	2	2	balanced: [0.3, 0.3, 0.4] overcrowd: [0.2, 0.5, 0.3] CellViT: [0.5, 0.3, 0.5]	balanced: [0.3, 0.3, 0.4] overcrowd: [0.2, 0.5, 0.3] CellViT: [0.5, 0.3, 0.5]

- Adam optimizer
- Learning rate test for initial LR
- 200 epochs
- Cyclical lerarning rates
- Best model on validation dice coefficient

Loss functions

• Weighted Binary Cross Entropy: higher weight to underrepresented class

$$L_{W-BCE}(y,\hat{y}) = -(\beta * ylog(\hat{y}) + (1-y)log(1-\hat{y}))$$

• Dice Loss: targets segmentation performance directly, low impact of small objects

$$DL(y, \hat{p}) = 1 - \frac{2y\hat{p} + 1}{y + \hat{p} + 1}$$

• Focal Loss: oversample hard examples

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} log(p_t), \qquad p_t = \begin{cases} p, & \text{if } y = 1\\ 1 - p, & \text{otherwise} \end{cases}$$

• Focal Tversky Loss: bring together advantages of Dice and Focal losses

$$FTL = \sum_{c} (1 - TI_{c})^{\gamma}, \quad TI(p, \hat{p}) = \frac{pp}{p\hat{p} + \beta(1 - p)\hat{p} + (1 - \beta)p(1 - \hat{p})}$$

٢

 \wedge

11/09/2023

filaments

and the second second

Fr.

11/09/2023